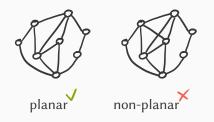
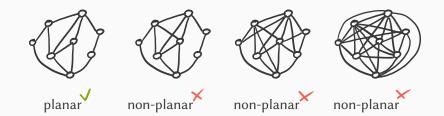
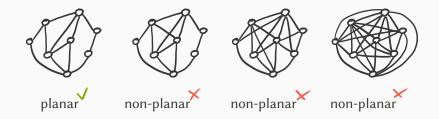
Testable Properties in General Graphs and Random Order Streaming

Artur Czumaj, Hendrik Fichtenberger, Pan Peng, Christian Sohler

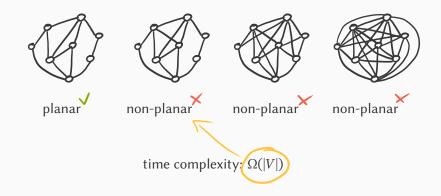
1

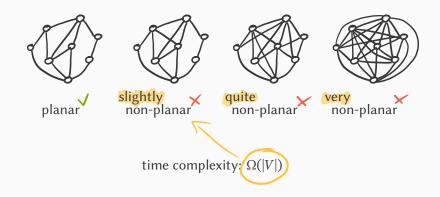


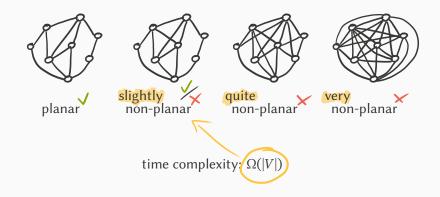


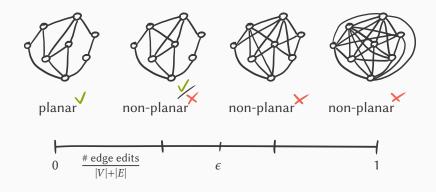


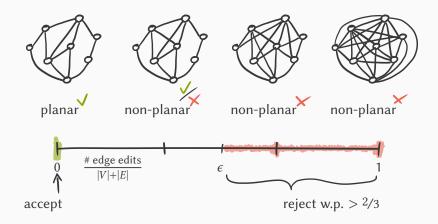
time complexity: $\Omega(|V|)$

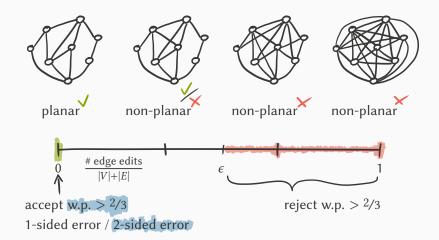


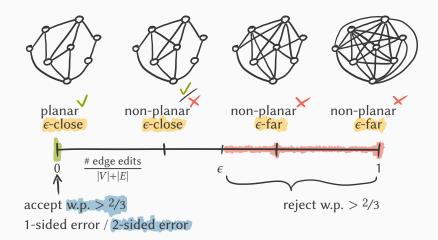


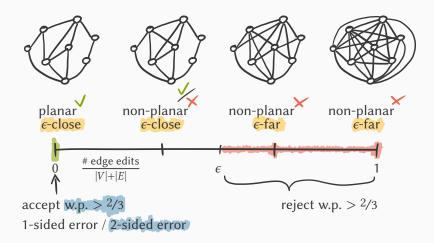












complexity: # queries to data structure

S bounded-degree model: $\forall v \in V : d(v) \le d, d \in O(1), n := |V|$ **S** input structure: adjacency lists (1 query = 1 entry) **S** error: 1-sided **S** bounded-degree model: $\forall v \in V : d(v) \le d, d \in O(1), n := |V|$ **S** input structure: adjacency lists (1 query \doteq 1 entry) **S** error: 1-sided

 $q(\epsilon, d)$ degree-regular, subgraph-free, connected, ...

N bounded-degree model: $\forall v \in V : d(v) \leq d, d \in O(1), n := |V|$ input structure: adjacency lists (1 query = 1 entry) 🛛 error: 1-sided

 $q(\epsilon, d)$ degree-regular, subgraph-free, connected, ... $\Theta(\sqrt{n})$ 2-colorability, expander $\Omega(n)$ 3-colorability

 \bowtie bounded-degree model: $\forall v \in V : d(v) \leq d, d \in O(1), n := |V|$ \boxtimes input structure: adjacency lists (1 query \doteq 1 entry) Rerror: 1-sided

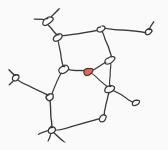
 $q(\epsilon, d)$ degree-regular, subgraph-free, connected, ...

no dependence on *n*

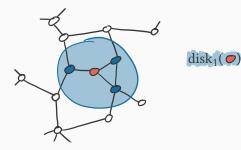
dependence on n

 $\Theta(\sqrt{n})$ = 2-colorability, expander $\Omega(n)$ = 3-colorability

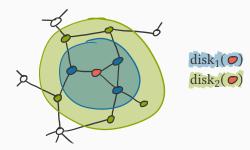
 $\operatorname{disk}_q(v)$: unlabelled subgraph induced by $\operatorname{BFS}(v)$ of depth q



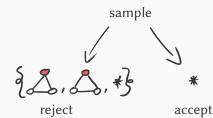
 $\operatorname{disk}_q(v)$: unlabelled subgraph induced by $\operatorname{BFS}(v)$ of depth q



$\operatorname{disk}_q(v)$: unlabelled subgraph induced by $\operatorname{BFS}(v)$ of depth q



Constant-Query Testers



Theorem [GR'09, ...]

A property tester for bounded-degree graphs with constant query complexity $q := q(\epsilon)$ can be transformed into an algorithm that

- 1. obtains a uniform sample *S* of $\Theta(q)$ many *q*-disks
- 2. rejects iff S is from a family of forbidden sets of q-disks

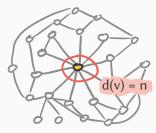
bounded-degree model
input structure: adjacency lists
error: 1-sided

bounded degree model general graphs
input structure: adjacency lists
error: 1-sided

bounded degree model general graphs input structure: adjacency lists error: 1-sided

What can a constant-query property tester do?

bounded degree model general graphs
input structure: adjacency lists
error: 1-sided



What can a constant-query property tester do? BFS

bounded degree model general graphs
input structure: adjacency lists
error: 1-sided

bounded degree model general graphs
input structure: adjacency lists
error: 1-sided

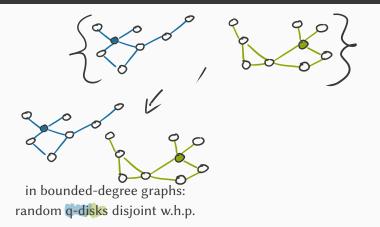
bounded degree model general graphs
input structure: adjacency lists
error: 1-sided

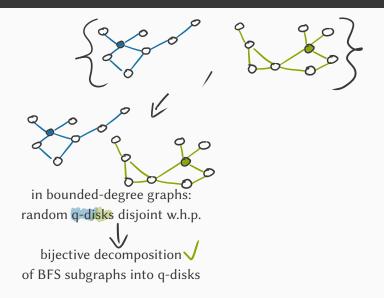
bounded degree model general graphs
input structure: adjacency lists
error: 1-sided

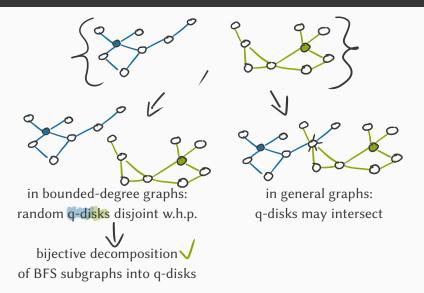
bounded degree model general graphs
input structure: adjacency lists
error: 1-sided

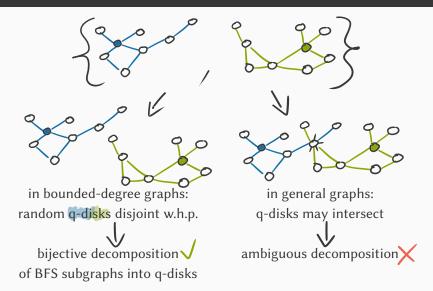
What can a constant-query property tester do? BPS random / subsampling BFS

tester obtains at most q many q-disks (with bounded degree q)









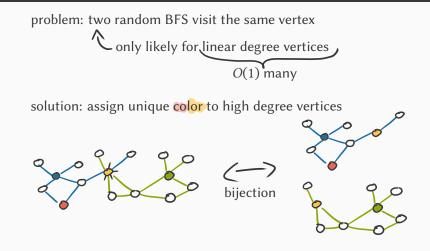
problem: two random BFS visit the same vertex

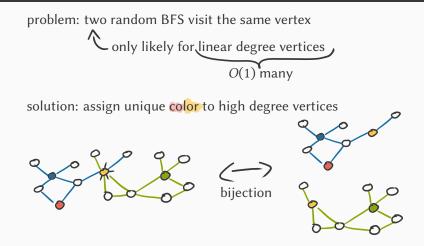
problem: two random BFS visit the same vertex \bigwedge only likely for linear degree vertices

problem: two random BFS visit the same vertex only likely for linear degree vertices O(1) many

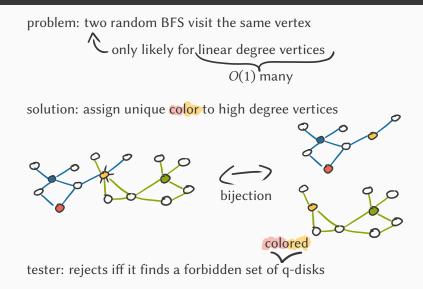
problem: two random BFS visit the same vertex only likely for linear degree vertices O(1) many

solution: assign unique color to high degree vertices





tester: rejects iff it finds a forbidden set of q-disks



Theorem

A property tester *for general graphs in the random-neighbor model* with constant query complexity $q := q(\epsilon)$ can be transformed into an algorithm that

- 1. obtains a uniform sample *S* of colored *q*-disks by performing $\Theta(q)$ random BFS (the number of colors is O(1))
- 2. rejects iff S is from a family of forbidden sets of colored q-disks

Theorem

A property tester *for general graphs in the random-neighbor model* with constant query complexity $q := q(\epsilon)$ can be transformed into an algorithm that

- 1. obtains a uniform sample *S* of colored *q*-disks by performing $\Theta(q)$ random BFS (the number of colors is O(1))
- 2. rejects iff S is from a family of forbidden sets of colored q-disks

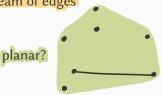
why q-disks and not simply forbidden subgraphs?

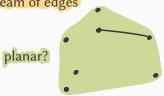
general graphs
input structure: adjacency lists
error: 1-sided

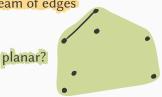
🔰 general graphs

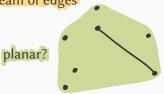
input structure: adjacency lists stream of edges

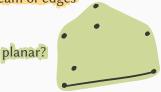
🛛 error: 1-sided











general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

• some problems $\Omega(n)$ in adversarial-order streams

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

- some problems $\Omega(n)$ in adversarial-order streams
- trivial if number of edges is *O*(*n*)

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

- some problems $\Omega(n)$ in adversarial-order streams
- trivial if number of edges is O(n)
- recent model: random-order streams

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

- some problems $\Omega(n)$ in adversarial-order streams
- trivial if number of edges is *O*(*n*)
- recent model: random-order streams

already known:

• estimate several graph parameters in general graphs [PS'18]

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

- some problems $\Omega(n)$ in adversarial-order streams
- trivial if number of edges is *O*(*n*)
- recent model: random-order streams

already known:

- estimate several graph parameters in general graphs [PS'18]
- transform constant-query testers for bounded-degree graphs to $O(\log n)$ -space streaming testers [MMPS'17]

general graphs
input structure: adjacency lists stream of edges
error: 1-sided

objective: o(n) space

- some problems $\Omega(n)$ in adversarial-order streams
- trivial if number of edges is *O*(*n*)
- recent model: random-order streams

already known:

- estimate several graph parameters in general graphs [PS'18]
- transform constant-query testers for bounded-degree graphs to $O(\log n)$ -space streaming testers [MMPS'17]

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

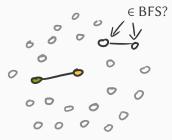
query tester's BFS

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS



idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

streaming tester's BFS

0

condition on: edges are streamed in a good order

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

streaming tester's BFS

condition on: edges are streamed in a good order Λ can bound probability by $\Omega(1)$

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

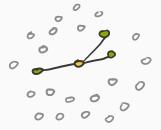
streaming tester's BFS

condition on: edges are streamed in a *good* order \bigwedge can bound probability by $\Omega(1)$

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

streaming tester's BFS



condition on: edges are streamed in a good order Λ can bound probability by $\Omega(1)$

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

streaming tester's BFS

condition on: edges are streamed in a good order Λ can bound probability by $\Omega(1)$

idea: sample $\Theta(q)$ vertices and simulate BFS in stream

query tester's BFS

streaming tester's BFS

condition on: edges are streamed in a *good* order \bigwedge can bound probability by $\Omega(1)$

then: bound probabilities to see colored q-disks independently

Theorem

Every constant-query property tester for general graphs in the random-neighbor model with one-sided error and constant query complexity admits a $O(\log n)$ space random order streaming tester.

Theorem

Every constant-query property tester for general graphs in the random-neighbor model with one-sided error and constant query complexity admits a $O(\log n)$ space random order streaming tester.

open problem: similar result for testers with two-sided error